BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana.
نویسندگان
چکیده
Molecular and genetic analyses have demonstrated that the Arabidopsis thaliana gene BELL1 (BEL1) is required for proper morphogenesis of the ovule integuments. Several lines of evidence suggest that BEL1 may act, at least in part, to repress the function of the organ identity gene AGAMOUS (AG) during ovule development. To study the relative roles of BEL1 and AG, plants homozygous for ag, bel1 or both were constructed in an ap2 mutant background where ovules form even in the absence of AG function. The loss of either BEL1 or AG led to a decrease in the number of mature ovules, accompanied by an increase in primordial outgrowths. These data suggest that BEL1 and AG gene products act early in ovule development in a partially redundant manner to direct ovule identity. Development of the abnormal integuments characteristic of the Bel1- mutant phenotype was found to be dependent on AG function. Finally, BEL1 appears to be required for embryo sac development independent of both other aspects of ovule morphogenesis and AG function. This study therefore suggests that both BEL1 and AG are required for several distinct aspects of ovule morphogenesis.
منابع مشابه
Homeotic Transformation of Ovules into Carpel-like Structures in Arabidopsis.
Ovules are specialized reproductive organs that develop within the carpels of higher plants. In Arabidopsis, mutations in two genes, BELL1 (BEL1) and APETALA2 (AP2), disrupt ovule development. In Bel1 ovules, the inner integument fails to form, the outer integument develops abnormally, and the embryo sac arrests at a late stage of megagametogenesis. During later stages of ovule development, cel...
متن کاملThe BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium
Ovule development in Arabidopsis involves the formation of three morphologically defined proximal-distal pattern elements. Integuments arise from the central pattern element. Analysis of Bell 1 (Bel 1) mutant ovules indicated that BEL1 was required for integument development. Cloning of the BEL1 locus reveals that it encodes a homeodomain transcription factor. Prior to integument initiation, BE...
متن کاملFunctional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy.
Reproductive organ development is one of the most important steps in the life cycle of plants. Studies using core eudicot species like thale cress (Arabidopsis thaliana) and snapdragon (Antirrhinum majus) have shown that MADS domain transcription factors belonging to the AGAMOUS (AG) subfamily regulate the identity of stamens, carpels, and ovules and that they are important for floral meristem ...
متن کاملbearded-ear encodes a MADS box transcription factor critical for maize floral development.
Although many genes that regulate floral development have been identified in Arabidopsis thaliana, relatively few are known in the grasses. In normal maize (Zea mays), each spikelet produces an upper and lower floral meristem, which initiate floral organs in a defined phyllotaxy before being consumed in the production of an ovule. The bearded-ear (bde) mutation affects floral development differ...
متن کاملSpecification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development
In Arabidopsis floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)-FD complex and the flower meristem identity gene LEAFY. The floral specification activity of FT is dependent upon two related BELL1-like homeobox (BLH) genes PENNYWISE (PNY) and POUND-FOOLISH (PNF) which are required for floral evocation. PNY and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 18 3 شماره
صفحات -
تاریخ انتشار 1999